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Lecture 8
• Fixed-points of order preserving functions

• Introduction to combinatorics



Fixed-point property

Definition.

Let (X,≼) be a poset and let 𝑓 be an order preserving function mapping 

the poset into itself, 𝑓: 𝑋→𝑋. An element 𝑝 ∈ 𝑋 is called a fixed-point

(or fixpoint) of 𝑓 iff 𝑓(𝑥) = 𝑥.

Examples.

1. Consider (ℕ,), 𝑓(𝑛) = 𝑛 + 1. Obviously, 𝑓 is an order preserving 

function with no fixed-points. 

2. For every poset (X,≼), every element is a fixed-point for the identity 

function 𝑖𝑑(𝑥) = 𝑥 (which is clearly order-preserving).



FAQ

1. Is it true that every order-preserving function on a finite poset 

has a fixed-point?

Of course not. Take 𝑛 > 1 and n-element set 𝑋, and 

(partially) order it by the 𝐸𝑄 (equality) relation. Then every 

permutation of 𝑋 is order-preserving.

2. Are there any posets such that every o.-p. function has a 

fixed-point?

Of course. Any 1-element poset.

OK, but any nontrivial ones?



Definition.

A poset (X,≼) has the fixed-point property (FPP) iff every order-

preserving function on 𝑋 has a fixed-point.

Example. The 𝑁-poset in the picture has FPP.

Suppose it does not. Let 𝑓 be an order-preserving function without fixpoints. 

Then 𝑓(𝑐) = 𝑑 because

𝑓(𝑐) = 𝑐 would mean f has a fixpoint, c

𝑓(𝑐) = 𝑎 would mean 𝑓(𝑎) = 𝑎, because 𝑎 ≼ 𝑐 implies 𝑓(𝑎) ≼ 𝑎
𝑓(𝑐) = 𝑏 would mean 𝑓(𝑏) = 𝑏, for the same reason.

In a similar way one can show that 𝑓(𝑏) = 𝑎. 

But now we have 𝑏 ≼ 𝑐 and ¬ 𝑓 𝑏 ≼ 𝑓 𝑐 which means 𝑓is not order-

preserving. QED



Theorem.

Every finite poset which has the largest element has the FPP.

Proof.

Suppose an order-preserving function f on 𝑋 has no fixed-points. 

Let p be the largest element in 𝑋. Since p is the largest, 𝑓(𝑝) ≼ 𝑝

and 𝑓 𝑝 ≠ 𝑝 (otherwise p is a fixpoint). Then 𝑓(𝑓(𝑝)) ≼ 𝑓(𝑝)

and 𝑓 𝑓 𝑝 ≠ 𝑓(𝑝) (otherwise 𝑓(𝑝) is a fixpoint) etc. Hence 

the set {… , 𝑓2 𝑝 , 𝑓 𝑝 , 𝑝} is an infinite chain in 𝑋.



Question. 

Is this not in contradiction with: “Consider (ℕ,), 𝑓(𝑛) = 𝑛 + 1. 

Then 𝑓 is an order-preserving function without fixed-points.”?

No, it is not. One reason is that ℕ is infinite, another that (ℕ,)

has no largest element. But this  question leads to another: 

can we drop the assumption of X being finite and only keep 

the existence of the largest element? The answer to this is 

also NO. Look at ({ … , -n, … ,-3,-2,-1,0}, ≤) and the function 

𝑓(𝑛) = 𝑛 − 1.

Comprehension.

Find an infinite poset with FPP or prove it does not exist.



COMBINATORICS

Some Propaganda

The subject of this part of the course is the science (or art) of 

enumerating elements of finite sets and some basic concepts of 

graph theory. 

FAQ. What is so exciting about counting elements of a finite set? 

You just count them one by one.

That’s true but listing all the elements may not necessarily be a 

trivial task.



Also, we are interested in general, rather than individual, 

answers. We ask questions like “what is the number of all subsets 

of an n element set” rather than “what is the number of all subsets 

of a 4-element set” and expect an answer in the form of a formula 

in variable n. One method of enumerating elements of a set is to 

design a systematic method of generating all objects of the set. 

This often leads to a formula yielding the size of the set as well. 



Example.

If you want to enumerate all 0-1 sequences (binary sequences) of 

length n consider your sequences binary representations of 

integers. Then start with (0,0, … ,0) which represents 0, and let 

each next sequence be the binary representation of (the number 

represented by the previous one)+1. This procedure results in the 

following sequence of 0-1 sequences (0,0, … ,0), (0,0, …,0,1), 

(0,0, … ,0,1,0), (0,0, … ,0,1,1), … , (1,1, … ,1), representing 

numbers 0,1, … ,2𝑛 − 1. Hence the answer is 2𝑛. 

Let 𝐴 be a finite set. We will denote by |𝐴| the number of 

elements in (or the size of) 𝐴. You may also come across symbols 

like 𝐴, 𝑐𝑎𝑟𝑑 𝐴 (for cardinality of A).



Theorem (Addition Rule)

For every two finite sets 𝐴 and 𝐵, 

𝐴 ∩ 𝐵 = ∅ ⇒ 𝐴 ∪ 𝐵 = 𝐴 + 𝐵

Proof. Induction on 𝑛 = |𝐵|. If n=0 or n=1 then, for every 𝐴, the 

equality is obvious. Suppose it holds whenever 𝐵 denotes an n-

element set and let |𝐵|=n+1, 𝑛 ≥ 1. Pick any 𝑏 ∈ 𝐵. Clearly, 𝐵 =
(𝐵 ∖ {𝑏}) ∪ {𝑏} (this is only true because 𝑏 ∈ 𝐵). Hence

|𝐴 ∪ 𝐵| = |𝐴 ∪ ((𝐵 ∖ {𝑏}) ∪ {𝑏})|

= |(𝐴 ∪ (𝐵 ∖ {𝑏})) ∪ {𝑏}| (by associativity of ∪)

= |𝐴 ∪ (𝐵 ∖ {𝑏})| + |{𝑏}| = (because 𝐴 ∪ 𝐵 ∖ 𝑏 ∩ 𝑏 = ∅)

= |𝐴| + |𝐵 ∖ {𝑏}| + 1 (by the induction hypothesis)

= |𝐴| + |𝐵| (𝑏 ∈ 𝐵, so |𝐵 ∖ {𝑏}| = B − 1).



Theorem. (Generalized Addition Rule)

If sets 𝐴1, 𝐴2, … , 𝐴𝑛 are pairwise disjoint then 

|𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛| = 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛

("pairwise disjoint" means 𝑖 ≠ j ⇒ 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖, 𝑗 = 1, … , 𝑛)

Proof.
Induction on n. For n = 1 trivial. For n = 2 this is the previous 
theorem. Consider the union of n+1 sets

|𝐵1 ∪ 𝐵2 ∪ ⋯ ∪ 𝐵𝑛+1| = |𝐵1 ∪ 𝐵2 ∪ ⋯ ∪ (𝐵n ∪ 𝐵𝑛+1)| =  

=|𝐵1| + |𝐵2| + ⋯ + |𝐵𝑛 ∪ 𝐵𝑛+1| (by ind. hypothesis)

=|𝐵1| + |𝐵2)| + 𝐵3 + ⋯ + |𝐵𝑛+1| (by the ordinary "two-sets" rule of 

addition applied to |𝐵𝑛 ∪ 𝐵𝑛+1|).



Comment.

The rule of addition and its generalized version are admittedly 

very simple, bordering on trivial. Nevertheless, they constitute 

the foundation of combinatorics.



Example

In how many ways one can redecorate a room if you can paint 

walls in any one of 15 colors and the ceiling in any of 4 colors? 

Obviously, we have 15 choices of wall colors and to each of these 

we have 4 choices of ceiling colors, so in total we have 15∗4=60 

ways. Unless you allow (but do not insist on) walls being painted 

different colors, in which case the number of choices is 154 ∗ 4.



Theorem (Product Rule)

For every two finite sets 𝐴 and B, 𝐴 × 𝐵 = 𝐴 𝐵 .

Proof. (a non-induction proof)

Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}. Then 

|𝐴 × 𝐵| =

|({𝑎1} × 𝐵) ∪ ({𝑎2} × 𝐵) ∪ ⋯ ∪ ({𝑎𝑛} × 𝐵)| =

{𝑎1} × 𝐵 + {𝑎2} ×  𝐵 + ⋯ + {𝑎𝑛} ×  𝐵 = (generalized rule of 

addition)

|𝐵| + 𝐵 + ⋯ 𝐵
n copies

= 𝑛|𝐵| = |𝐴||𝐵|. QED



Just like the addition rule, the product rule can be easily 

generalized to any finite number of finite sets. 

Theorem. (Generalized Product Rule)

For every collection of finite sets 𝐴1, 𝐴2, … , 𝐴𝑛,
𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 = 𝐴1 𝐴2 … 𝐴𝑛 .

Proof. Easy induction on n.

Comment. If you can split a process into independent stages and 

the number of results in every stage is fixed, then the total 

number of possible outcomes of the process is the product of 

numbers of partial results.



Example. In how many ways can one paint 10 benches in 

green, red or blue? Obviously, the product rule applies here, 

and the answer is 310. What if we have 3 benches and 10 

colors? Then the answer is 103.



Theorem (The ‘number of functions’ formula)

The number of all functions from an n-element into a k-

element set is 𝑘𝑛. In other words, 𝑌𝑋 = 𝑌 𝑋 .

Proof.

Denote elements of 𝑋 by 𝑥1, … , 𝑥𝑛. The process of 

constructing a function can be split into 𝑛 steps. Assign an 

element of 𝑌 to 𝑥1 (𝑘 possibilities), assign an element of 𝑌 to 

𝑥2 (also 𝑘 possibilities) etc. By the Generalized Product Rule 

we get the result. QED 

Notice. It is not important which element of 𝑋 denoted by 

𝑥1, which by 𝑥2 etc.



IMPORTANT.

This question may easily be misunderstood. We are NOT 

asking what is the number of ways the process of painting the 

benches may go. We are only asking what is the number of 

possible results of the process. It may well not be a process;

all benches may be painted simultaneously. 

The order in which we paint the benches IS NOT important. 

There is no timeline here – there might be, but then it would 

be a different problem.

What is important is which bench gets which color. 

Benches (in this example) are distinguishable.

Colors (in this example) are distinguishable.



The terms distinguishable and indistinguishable are often 

used in combinatorial problems. How can benches be 

indistinguishable? What indistinguishable really means is we 

do not care to distinguish between them. The same example 

with indistinguishable benches would lead to the question 

how many benches are painted green, not which benches are 

painted green (or red, or blue). It is a different question with a 

very different answer. What happens if I am color-blind and 

the colors are indistinguishable, too? Then we get yet another 

question but this time a completely trivial one.

Comprehension. Why is the last question trivial? 



To simplify notation we often use [n] = {1,2, ... ,n} instead of 

general n-element set. The last result can be written as

𝑘 𝑛 = 𝑘n. 

or, since 𝑌𝑋 denotes the set of all functions from X into Y as

𝑌𝑋 = 𝑌 𝑋 .



Notice that you can think about functions from [n] (or any n-

element set X) into a k-element set A as n-long sequences of 

elements of A with no restriction on the number of times a 

particular element appears in the sequence. Such functions are 

sometimes called variations with repetitions.

Also, this is what happens when you pick n elements, one at a 

time, from a k-element container and you return the chosen 

element back to the container before you make the next choice.

In each case the number of possible results is 𝑘𝑛.


